Deployment Optimization Method of Multistatic Radar for Constructing Circular Barrier Coverage

Author:

Li Hai-Peng,Feng Da-Zheng,Chen Shao-Feng,Zhou Ya-Peng

Abstract

To construct circular barrier coverage (CBC) with multistatic radars, a deployment optimization method based on equipartition strategy is proposed in this paper. In the method, the whole circular area is divided into several sub-circles with equal width, and each sub-circle is blanketed by a sub-CBC that is built based on the multistatic radar deployment patterns. To determine the optimal deployment patterns for each sub-CBC, the optimization conditions are firstly studied. Then, to optimize the deployment of the whole circular area, a model based on minimum deployment cost is proposed, and the proposed model is divided into two sub-models to solve the optimization issue. In the inner model, it is assumed that the width of a sub-circle is given. Based on the optimization conditions of the deployment pattern, integer linear programming (ILP) and exhaustive method (EM) are jointly adopted to determine the types and numbers of deployment patterns. Moreover, a modified formula is introduced to calculate the maximum valid number of receivers in a pattern, thus narrowing the search scope of the EM. In the outer model, the width of a sub-circle is assumed to be a variable, and the EM is adopted to determine the minimum total deployment cost and the optimal deployment patterns on each sub-circle. Moreover, the improved formula is exploited to determine the range of width for a sub-circle barrier and reduce the search scope of the EM. Finally, simulations are conducted in different conditions to verify the effectiveness of the proposed method. The simulation results indicate that the proposed method can spend less deployment cost and deploy fewer transmitters than the state-of-the-artwork.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-sensor dynamic scheduling for defending UAV swarms with Fresnel zone under complex terrain;ISA Transactions;2024-10

2. An improved two-phase heuristic for active multistatic sonar network configuration;Expert Systems with Applications;2024-03

3. Cuckoo search algorithm-based optimal deployment method of heterogeneous multistatic radar for barrier coverage;Journal of Systems Engineering and Electronics;2023-10

4. Two-dimensional Deployment Optimization Method for the Barrier Coverage of Bistatic Radars;J ELECTRON INF TECHN;2023

5. Design and Deployment of Space Surveillance System to Monitor Geosynchronous Orbit;2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA);2022-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3