Sensors for Wheelchair Tennis: Measuring Trunk and Shoulder Biomechanics and Upper Extremity Vibration during Backhand Stroke

Author:

Ju Yan-Ying,Chu Wan-Ting,Shieh Wann-Yun,Cheng Hsin-Yi KathyORCID

Abstract

This study was the first to compare the differences in trunk/shoulder kinematics and impact vibration of the upper extremity during backhand strokes in wheelchair tennis players and the able-bodied players relative to standing and sitting positions, adopting an electromagnetic system along with wearable tri-axial accelerometers upon target body segments. A total of 15 wheelchair tennis players and 15 able-bodied tennis players enrolled. Compared to players in standing positions, wheelchair players demonstrated significant larger forward trunk rotation in the pre-preparation, acceleration, and deceleration phase. Significant higher trunk angular velocity/acceleration and shoulder flexion/internal rotation angular velocity/acceleration were also found. When able-bodied players changed from standing to sitting positions, significant changes were observed in the degree of forward rotation of the trunk and shoulder external rotation. These indicated that when the functions of the lower limbs and trunk are lacking or cannot be used effectively, “biomechanical solutions” such as considerable reinforcing movements need to be made before the hitting movement. The differences between wheelchair tennis players and able-bodied players in sitting positions could represent the progress made as the wheelchair players evolve from novices to experts. Knowledge about how sport biomechanics change regarding specific disabilities can facilitate safe and inclusive participation in disability sports such as wheelchair tennis.

Funder

Ministry of Science and Technology, Taiwan

National Science Council

Chang Gung Memorial Hospital, Linkou

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3