Valuation of the Energy Performance of a Greenhouse with an Electric Heater Using Numerical Simulations

Author:

Aguilar-Rodriguez Cruz ErnestoORCID,Flores-Velazquez Jorge,Ojeda-Bustamante Waldo,Rojano FernandoORCID,Iñiguez-Covarrubias Mauro

Abstract

In Mexico, there are regions where the temperature drops below the minimum threshold for tomato cultivation (10 °C), requiring the implementation of auxiliary equipment to heat greenhouse air. The objective of this work was to estimate the energy consumption necessary to maintain climate requirements of a greenhouse located in Texcoco, State of Mexico, by using a model of energy balance implemented on Computational Fluid Dynamics (CFD) simulations. The temperature prediction relied on a numerical model based on CFD, proposing a benchmarking on the position and direction of the heater to estimate its effect on the thermal distribution. Results indicated that heater operation on January 2019, a power of 85.56 kW was needed to keep the greenhouse at 12 °C. Also, simulations indicated that electric heater used was not enough to get a homogeneous temperature inside the greenhouse. To achieve well-distributed thermal conditions, it was necessary to consider both the direction and position of heaters. Consequently, airflow direction became more important than height of the heater in order to homogenize the greenhouse area, given that the thermal gradient was reduced due to reverse heat flows.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3