Metal Chlorides Grafted on SAPO-5 (MClx/SAPO-5) as Reusable and Superior Catalysts for Acylation of 2-Methylfuran Under Non-Microwave Instant Heating Condition

Author:

Auwal Ismail Alhassan,Wong Ka-Lun,Ling Tau Chuan,Ooi Boon Seng,Ng Eng-PohORCID

Abstract

Highly active metal chlorides grafted on silicoaluminophosphate number 5, MClx/SAPO-5 (M = Cu, Co, Sn, Fe and Zn) catalysts via simple grafting of respective metal chlorides (MClx) onto SAPO-5 are reported. The study shows that thermochemical treatment after grafting is essential to ensure the formation of chemical bondings between MClx and SAPO-5. In addition, the microscopy, XRD and nitrogen adsorption analyses reveal the homogeneous distribution of MClx species on the SAPO-5 surface. Furthermore, the elemental microanalysis confirms the formation of Si–O–M covalent bonds in ZnClx/SAPO-5, SnClx/SAPO-5 and FeClx/SAPO-5 whereas only dative bondings are formed in CoClx/SAPO-5 and CuClx/SAPO-5. The acidity of MClx/SAPO-5 is also affected by the type of metal chloride grafted. Thus, their catalytic behavior is evaluated in the acid-catalyzed acylation of 2-methylfuran under novel non-microwave instant heating conditions (90–110 °C, 0–20 min). ZnClx/SAPO-5, which has the largest amount of acidity (mainly Lewis acid sites), exhibits the best catalytic performance (94.5% conversion, 100% selective to 2-acetyl-5-methylfuran) among the MClx/SAPO-5 solids. Furthermore, the MClx/SAPO-5 solids, particularly SnClx/SAPO-5, FeClx/SAPO-5 and ZnClx/SAPO-5, also show more superior catalytic performance than common homogeneous acid catalysts (H2SO4, HNO3, CH3COOH, FeCl3, ZnCl2) with higher reactant conversion and catalyst reusability, thus offering a promising alternative for the replacement of hazardous homogeneous catalysts in Friedel–Crafts reactions.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3