Investigation on Stray-Capacitance Influences of Coaxial Cables in Capacitive Transducers for a Space Inertial Sensor

Author:

Yu Jianbo,Wang Chengrui,Wang Ying,Bai YanzhengORCID,Hu Ming,Li Ke,Li Zhuxi,Qu Shaobo,Wu Shuchao,Zhou Zebing

Abstract

Ultra-sensitive inertial sensors are one of the key components in satellite Earth’s gravity field recovery missions and space gravitational wave detection missions. Low-noise capacitive position transducers are crucial to these missions to achieve the scientific goal. However, in actual engineering applications, the sensor head and electronics unit usually place separately in the satellite platform where a connecting cable is needed. In this paper, we focus on the stray-capacitance influences of coaxial cables which are used to connect the mechanical core and the electronics. Specially, for the capacitive transducer with a differential transformer bridge structure usually used in high-precision space inertial sensors, a connecting method of a coaxial cable between the transformer’s secondary winding and front-end circuit’s preamplifier is proposed to transmit the AC modulated analog voltage signal. The measurement and noise models including the stray-capacitance of the coaxial cable under this configuration is analyzed. A prototype system is set up to investigate the influences of the cables experimentally. Three different types and lengths of coaxial cables are chosen in our experiments to compare their performances. The analysis shows that the stray-capacitance will alter the circuit’s resonant frequency which could be adjusted by additional tuning capacitance, then under the optimal resonant condition, the output voltage noises of the preamplifier are measured and the sensitivity coefficients are also calibrated. Meanwhile, the stray-capacitance of the cables is estimated. Finally, the experimental results show that the noise level of this circuit with the selected cables could all achieve 1–2 × 10−7 pF/Hz1/2 at 0.1 Hz.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3