Cuckoo-PC: An Evolutionary Synchronization-Aware Placement of SDN Controllers for Optimizing the Network Performance in WSNs

Author:

Tahmasebi Shirin,Safi MohadesehORCID,Zolfi Somayeh,Maghsoudi Mohammad Reza,Faragardi Hamid RezaORCID,Fotouhi HosseinORCID

Abstract

Due to reliability and performance considerations, employing multiple software-defined networking (SDN) controllers is known as a promising technique in Wireless Sensor Networks (WSNs). Nevertheless, employing multiple controllers increases the inter-controller synchronization overhead. Therefore, optimal placement of SDN controllers to optimize the performance of a WSN, subject to the maximum number of controllers, determined based on the synchronization overhead, is a challenging research problem. In this paper, we first formulate this research problem as an optimization problem, then to address the optimization problem, we propose the Cuckoo Placement of Controllers (Cuckoo-PC) algorithm. Cuckoo-PC works based on the Cuckoo optimization algorithm which is a meta-heuristic algorithm inspired by nature. This algorithm seeks to find the global optimum by imitating brood parasitism of some cuckoo species. To evaluate the performance of Cuckoo-PC, we compare it against a couple of state-of-the-art methods, namely Simulated Annealing (SA) and Quantum Annealing (QA). The experiments demonstrate that Cuckoo-PC outperforms both SA and QA in terms of the network performance by lowering the average distance between sensors and controllers up to 13% and 9%, respectively. Comparing our method against Integer Linear Programming (ILP) reveals that Cuckoo-PC achieves approximately similar results (less than 1% deviation) in a noticeably shorter time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3