Landslide Susceptibility Mapping Based on Information-GRUResNet Model in the Changzhou Town, China

Author:

Lin Zian1,Chen Qiuguang2,Lu Weiping3,Ji Yuanfa4,Liang Weibin4,Sun Xiyan4

Affiliation:

1. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

2. Guangxi Zhuang Autonomous Region Geological Environment Monitoring Station, Wuzhou 543000, China

3. Guangxi Institute of Meteorological Science, Nanning 530000, China

4. Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Landslide susceptibility mapping is the basis of regional landslide risk assessment and prevention. In recent years, deep learning models have been applied in landslide susceptibility mapping, but some problems remain, such as gradient disappearance, explosion, and degradation. Additionally, the potential nonlinear temporal and spatial characteristics between landslides and environmental factors may not be captured, and nonlandslide points may be randomly selected in the susceptibility mapping process. To overcome these shortcomings, in this paper, an information-gate recurrent unit residual network (Information-GRUResNet) model is proposed to produce a landslide susceptibility map by combining existing landslide records and environmental factor data. The model uses the information theory method to produce the initial landslide susceptibility map. Then, representative grid units and landslide points are selected as input variables of the GRUResNet model, from which nonlinear temporal and spatial characteristics are extracted to produce a landslide susceptibility map. Changzhou town in Wuzhou, China, is selected as a case study, and it is verified that the Information-GRUResNet model can accurately produce a landslide susceptibility map for the selected area. Finally, the Information-GRUResNet model is compared with GRU, RF, and LR models. The experimental results show that the Information-GRUResNet model is more accurate than the other three models.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Guangxi Zhuang Autonomous Region

Natural Science Foundation of Guangxi Province of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3