Author:
Wei Xueying,Behm Ingolf,Winkler Tony,Scharf Stefan,Li Xujun,Bähr Rüdiger
Abstract
Producing metal parts from Fused Filament Fabrication (FFF) 3D printing coupled with a metal/polymer hybrid filament, considering the advantages of high-performance and low cost, has generated considerable research interest recently. This paper addresses the studied relationship between variable printing/sintering directions and the properties of the sintered metal parts. It was shown that the printing directions played a significant role in determining the properties of final products, such as shrinkage, tensile stress, and porosity. The shrinkage in the layer direction because of anisotropic behavior is more minor than in the other dimensions. The microstructural analysis indicated that the printing directions had influenced the form and position of porosity on the produced metal parts. Most porosities occurred on the surfaces printed parallel to the printing bed. Furthermore, the sintering orientations had no possible benefits for dimension shrinkage, weight shrinkage, density, and porosity position of produced metal parts. However, the sintering direction “upright” resulted in parting lines inside the sintered tensile samples and made them fragile. The best printing-sintering combination was “on-edge-flat”.
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献