Theoretical Model for the Impact-Initiated Chemical Reaction of Al/PTFE Reactive Material

Author:

Lu Guancheng,Li Peiyu,Liu Zhenyang,Xie JianwenORCID,Ge ChaoORCID,Wang HaifuORCID

Abstract

Reactive material (RM) is a special kind of energetic material that can react and release chemical energy under highly dynamic loads. However, its energy release behavior is limited by its own strength, showing unique unsustainable characteristics, which lack a theoretical description. In this paper, an impact-initiated chemical reaction model is proposed to describe the ignition and energy release behavior of Al/PTFE RM. The hotspot formation mechanism of pore collapse was first introduced to describe the decomposition process of PTFE. Material fragmentation and PTFE decomposition were used as ignition criteria. Then the reaction rate of the decomposition product with aluminum was calculated according to the gas-solid chemical reaction model. Finally, the reaction states of RM calculated by the model are compared and qualitatively consistent with the experimental results. The model provides insight into the thermal-mechanical-chemical responses and references for the numerical simulation of impact ignition and energy release behavior of RM.

Funder

the State Key Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Damage effects of double-spaced aluminum plates by reactive material projectile impact

2. Reactive Fragrant Warhead for Enhanced Neutralization of Mortar, Rocket, and Missile Threats;William,2006

3. Barnie: A unitary demolition warhead;Baker;Proceedings of the 19th International Symposium on Ballistics,2001

4. Impact-induced initiation and energy release behavior of reactive materials

5. Detonation in an aluminum-Teflon mixture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3