Abstract
Nowadays, special importance is given to quality control and food safety. Food quality currently creates significant problems for the industry and implicitly for consumers and society. The effects materialize in economic losses, alterations of the quality and organoleptic properties of the commercial products, and, last but not least, they constitute risk factors for the consumer’s health. In this context, the development of analytical systems for the rapid determination of the sanitary quality of food products by detecting possible pathogenic microorganisms (such as Escherichia coli or Salmonella due to the important digestive disorders that they can cause in many consumers) is of major importance. Using efficient and environmentally friendly detection systems for identification of various pathogens that modify food matrices and turn them into food waste faster will also improve agri-food quality throughout the food chain. This paper reviews the use of metal nanoparticles used to obtain bio nanosensors for the purpose mentioned above. Metallic nanoparticles (Au, Ag, etc.) and their oxides can be synthesized by several methods, such as chemical, physical, physico-chemical, and biological, each bringing advantages and disadvantages in their use for developing nanosensors. In the “green chemistry” approach, a particular importance is given to the metal nanoparticles obtained by phytosynthesis. This method can lead to the development of good quality nanoparticles, at the same time being able to use secondary metabolites from vegetal wastes, as such providing a circular economy character. Considering these aspects, the use of phytosynthesized nanoparticles in other biosensing applications is also presented as a glimpse of their potential, which should be further explored.
Subject
General Materials Science
Reference216 articles.
1. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015,2015
2. Chapter 1—Food Products and Food Contamination;Kamala,2018
3. A technique comes to life for security of life: The food contaminant sensors;Patra,2017
4. https://dictionary.cambridge.org/us/dictionary/english/food
5. https://www.lexico.com/en/definition/food
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献