Experimental and Computational Study of Mechanical and Thermal Characteristics of h-BN and GNP Infused Polymer Composites for Elevated Temperature Applications

Author:

Choukimath Mantesh C.ORCID,Banapurmath Nagaraj R.,Riaz FahidORCID,Patil Arun Y.ORCID,Jalawadi Arun R.,Mujtaba M. A.ORCID,Shahapurkar Kiran,Khan T. M. YunusORCID,Alsehli MishalORCID,Soudagar Manzoore Elahi M.ORCID,Fattah I. M. R.ORCID

Abstract

Polymer-based nanocomposites are being considered as replacements for conventional materials in medium to high-temperature applications. This article aims to discover the synergistic effects of reinforcements on the developed polymer-based nanocomposite. An epoxy-based polymer composite was manufactured by reinforcing graphene nanoplatelets (GNP) and h-boron nitride (h-BN) nanofillers. The composites were prepared by varying the reinforcements with the step of 0.1 from 0.1 to 0.6%. Ultrasonication was carried out to ensure the homogenous dispersion of reinforcements. Mechanical, thermal, functional, and scanning electron microscopy (SEM) analysis was carried out on the novel manufactured composites. The evaluation revealed that the polymer composite with GNP 0.2 by wt % has shown an increase in load-bearing capacity by 265% and flexural strength by 165% compared with the pristine form, and the polymer composite with GNP and h-BN 0.6 by wt % showed an increase in load-bearing capacity by 219% and flexural strength by 114% when compared with the pristine form. Furthermore, the evaluation showed that the novel prepared nanocomposite reinforced with GNP and h-BN withstands a higher temperature, around 340 °C, which is validated by thermogravimetric analysis (TGA) trials. The numerical simulation model is implemented to gather the synthesised nanocomposite’s best composition and mechanical properties. The minor error between the simulation and experimental data endorses the model’s validity. To demonstrate the industrial applicability of the presented material, a case study is proposed to predict the temperature range for compressor blades of gas turbine engines containing nanocomposite material as the substrate and graphene/h-BN as reinforcement particles.

Funder

Taif University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3