Abstract
Due to particular physico-chemical characteristics and prominent optical properties, nanostructured germanium (Ge) appears as a promising material for biomedical applications, but its use in biological systems has been limited so far due to the difficulty of preparation of Ge nanostructures in a pure, uncontaminated state. Here, we explored the fabrication of Ge nanoparticles (NPs) using methods of pulsed laser ablation in ambient gas (He or He-N2 mixtures) maintained at low residual pressures (1–5 Torr). We show that the ablated material can be deposited on a substrate (silicon wafer in our case) to form a nanostructured thin film, which can then be ground in ethanol by ultrasound to form a stable suspension of Ge NPs. It was found that these formed NPs have a wide size dispersion, with sizes between a few nm and hundreds of nm, while a subsequent centrifugation step renders possible the selection of one or another NP size fraction. Structural characterization of NPs showed that they are composed of aggregations of Ge crystals, covered by an oxide shell. Solutions of the prepared NPs exhibited largely dominating photoluminescence (PL) around 450 nm, attributed to defects in the germanium oxide shell, while a separated fraction of relatively small (5–10 nm) NPs exhibited a red-shifted PL band around 725 nm under 633 nm excitation, which could be attributed to quantum confinement effects. It was also found that the formed NPs exhibit high absorption in the visible and near-IR spectral ranges and can be strongly heated under photoexcitation in the region of relative tissue transparency, which opens access to phototherapy functionality. Combining imaging and therapy functionalities in the biological transparency window, laser-synthesized Ge NPs present a novel promising object for cancer theranostics.
Funder
Russian Science Foundation
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献