Blown Composite Films of Low-Density/Linear-Low-Density Polyethylene and Silica Aerogel for Transparent Heat Retention Films and Influence of Silica Aerogel on Biaxial Properties

Author:

Yang Seong BaekORCID,Lee Jungeon,Yeasmin Sabina,Park Jae Min,Han Myung Dong,Kwon Dong-JunORCID,Yeum Jeong Hyun

Abstract

Blown films based on low-density polyethylene (LDPE)/linear low-density polyethylene (LLDPE) and silica aerogel (SA; 0, 0.5, 1, and 1.5 wt.%) were obtained at the pilot scale. Good particle dispersion and distribution were achieved without thermo oxidative degradation. The effects of different SA contents (0.5–1.5 wt.%) were studied to prepare transparent-heat-retention LDPE/LLDPE films with improved material properties, while maintaining the optical performance. The optical characteristics of the composite films were analyzed using methods such as ultraviolet–visible spectroscopy and electron microscopy. Their mechanical characteristics were examined along the machine and transverse directions (MD and TD, respectively). The MD film performance was better, and the 0.5% composition exhibited the highest stress at break. The crystallization kinetics of the LDPE/LLDPE blends and their composites containing different SA loadings were investigated using differential scanning calorimetry, which revealed that the crystallinity of LDPE/LLDPE was increased by 0.5 wt.% of well-dispersed SA acting as a nucleating agent and decreased by agglomerated SA (1–1.5 wt.%). The LDPE/LLDPE/SA (0.5–1.5 wt.%) films exhibited improved infrared retention without compromising the visible light transmission, proving the potential of this method for producing next-generation heat retention films. Moreover, these films were biaxially drawn at 13.72 MPa, and the introduction of SA resulted in lower draw ratios in both the MD and TD. Most of the results were explained in terms of changes in the biaxial crystallization caused by the process or the influence of particles on the process after a systematic experimental investigation. The issues were strongly related to the development of blown nanocomposites films as materials for the packaging industry.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3