Early Identification and Dynamic Stability Evaluation of High-Locality Landslides in Yezhi Site Area, China by the InSAR Method

Author:

Lian Baoqin1,Wang Daozheng1,Wang Xingang1ORCID,Tan Weijia2

Affiliation:

1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China

2. College of Geological Engineering and Surveying, Chang’an University, Xi’an 710054, China

Abstract

In mountainous regions, high-locality landslides have the characteristics of a latent disaster process with a wide disaster range, which can easily cause large casualties. Therefore, early landslide identification and dynamic stability evaluation are significant. We first used multi-temporal synthetic aperture radar data to detect potential landslides at Yezhi Site Area during the 2015–2020 period, identifying and mapping a total of 18 active landslides. The study area was found to have an average deformation rate between −15 and 10 mm/y during the period. Then, time series and spatiotemporal deformation characteristics of landslides were examined using interferogram stacking and small baseline interferometry techniques. The results show that the majority of the landslide deformations detected exhibit a periodic variation trend, and the study area was in a slow deformation state before 2017. Finally, combined with detection results, Google Earth optical images, and field investigations, it is concluded that the main factors affecting the time series deformation and spatial distribution of landslides in the study area are rainfall, geological factors, and engineering activities. The results of this study provide valuable technical references and support for early identification and dynamic stability evaluation of regional active landslides in complex terrain, especially for high-locality landslides.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Nature Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3