Climate Warming Benefits Plant Growth but Not Net Carbon Uptake: Simulation of Alaska Tundra and Needle Leaf Forest Using LPJ-GUESS

Author:

Liu Cui1,Li Chuanhua12ORCID,Li Liangliang1

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

2. Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Climate warming significantly impacts Arctic vegetation, yet its future role as a carbon sink or source is unclear. We analyzed vegetation growth and carbon exchange in Alaska’s tundra and needle leaf forests using the LPJ-GUESS model. The accuracy of the model is verified using linear regression of the measured data from 2004 to 2008, and the results are significantly correlated, which proves that the model is reliable, with R2 values of 0.51 and 0.46, respectively, for net ecosystem carbon exchange (NEE) at the tundra and needle leaf forest sites, and RMSE values of 22.85 and 23.40 gC/m2/yr for the tundra and needle forest sites, respectively. For the gross primary production (GPP), the R2 values were 0.66 and 0.85, and the RMSE values were 39.25 and 43.75 gC/m2/yr at the tundra and needle leaf forest sites, respectively. We simulated vegetation carbon exchanges for 1992–2014 and projected future exchanges for 2020–2100 using climate variables. Under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, GPP values increase with higher emissions, while the NEE showed great fluctuations without significant differences among the three pathways. Our results showed although climate warming can benefit vegetation growth, net carbon assimilation by vegetation may not increase accordingly in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference56 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Hansen, J., Ruedy, R., Sato, M., and Lo, K. (2010). Global Surface Temperature Change. Rev. Geophys., 48.

3. Park, H., Tanoue, M., Sugimoto, A., Ichiyanagi, K., Iwahana, G., and Hiyama, T. (2021). Quantitative separation of precipitation and permafrost waters used for evapotranspiration in a boreal forest: A numerical study using tracer model. J. Geophys. Res. Biogeosci., 126.

4. Parmesan, C., Morecroft, M.D., and Trisurat, Y. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability, GIEC.

5. Modeling climate change impact on groundwater and adaptation strategies for its sustainable management in the Karnal district of Northwest India;Kumar;Clim. Change,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3