Research on the Optimization of Multi-Class Land Cover Classification Using Deep Learning with Multispectral Images

Author:

Li Yichuan1,Yu Junchuan1ORCID,Wang Ming1,Xie Minying1,Xi Laidian2,Pang Yunxuan2,Hou Changhong3

Affiliation:

1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China

2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

3. School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

With the advancement of artificial intelligence, deep learning has become instrumental in land cover classification. While there has been a notable emphasis on refining model structures to improve classification accuracy, it is imperative to also emphasize the pivotal role of data-driven optimization techniques. This paper presents an in-depth investigation into optimizing multi-class land cover classification using high-resolution multispectral images from Worldview3. We explore various optimization strategies, including refined sampling strategies, data band combinations, loss functions, and model enhancements. Our optimizations led to a substantial increase in the Mean Intersection over Union (mIoU) classification accuracy, improving from a baseline of 0.520 to a final accuracy of 0.709, which represents a 35.2% enhancement. Specifically, by optimizing the classic semantic segmentation network in four key aspects, we improved the mIoU by 15.5%. Further improvements through changes in data combinations, sampling methods, and loss functions led to an overall 17.2% increase in mIoU. The proposed model optimization methods enabled the OUNet to outperform the baseline model by providing more precise edge detection and feature representation, while reducing the model parameters scale. Experimental evidence shows that in the application of multi-class land surface classification, increasing the quantity and diversity of samples, avoiding data imbalance issues, is equally valuable for improving overall classification accuracy as it is for enhancing model performance.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3