LoRaWAN for Smart Campus: Deployment and Long-Term Operation Analysis

Author:

Yasmin Rumana,Mikhaylov KonstantinORCID,Pouttu Ari

Abstract

The recent years have gradually increased the value of wireless connectivity, making it the de facto commodity for both human users and the machines. In this paper, we summarize our experiences of deploying and managing for over two years the extensive indoor sensor network composed of more than three hundred devices connected over LoRaWAN low power wide area network (LPWAN) technology. We start by detailing the background and methodology of our deployment and then present the results of analyzing the network’s operation over a period of two years, focusing specifically on identifying the reasons after the packet losses. Our results reveal that despite the common assumptions, in a real-life network, the packets are lost not only during the on-air transmission but also within the backbone. Among the other interesting findings are the observed nonuniform distribution of the packet transmissions by the nodes in the networks, the seasonal effects on the packet delivery, and the observed effects of the interferences on network performance. The empirical results presented in the paper provide valuable insight into the performance of a real-life extensive LoRaWAN network deployed in an indoor environment and thus may be of interest both to the practitioners and academics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Future Industrial Applications: Exploring LPWAN-Driven IoT Protocols;Sensors;2024-04-14

2. The role of information and communication technologies in developing a smart campus with its four pillars’ architectural sketch;Education and Information Technologies;2024-01-12

3. Enhancing LoRa Communication: A Comprehensive Review of Improvement Techniques;2023 7th International Conference on System Reliability and Safety (ICSRS);2023-11-22

4. Augmented Reality Integration for Real-Time Security and Maintenance in IoT-Enabled Smart Campuses;2023 IEEE 31st International Conference on Network Protocols (ICNP);2023-10-10

5. Towards Dense Indoor Environmental Sensing with LoraWAN;2023 18th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA);2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3