EEG-Based Emotion Classification Using Long Short-Term Memory Network with Attention Mechanism

Author:

Kim Youmin,Choi AhyoungORCID

Abstract

Recently, studies that analyze emotions based on physiological signals, such as electroencephalogram (EEG), by applying a deep learning algorithm have been actively conducted. However, the study of sequence modeling considering the change of emotional signals over time has not been fully investigated. To consider long-term interaction of emotion, in this study, we propose a long short-term memory network to consider changes in emotion over time and apply an attention mechanism to assign weights to the emotional states appearing at specific moments based on the peak–end rule in psychology. We used 32-channel EEG data from the DEAP database. Two-level (low and high) and three-level (low, middle, and high) classification experiments were performed on the valence and arousal emotion models. The results show accuracies of 90.1% and 87.9% using the two-level classification for the valence and arousal models with four-fold cross validation, respectively. In the case of the three-level classification, these values were obtained as 83.5% and 82.6%, respectively. Additional experiments were conducted using a network combining a convolutional neural network (CNN) submodule with the proposed model. The obtained results showed accuracies of 90.1% and 88.3% in the case of the two-level classification and 86.9% and 84.1% in the case of the three-level classification for the valence and arousal models with four-fold cross validation, respectively. In 10-fold cross validation, there were 91.8% for valence and 91.6% for arousal accuracy, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3