Microservice Security Framework for IoT by Mimic Defense Mechanism

Author:

Ying FeiORCID,Zhao ShengjieORCID,Deng HaoORCID

Abstract

Containers and microservices have become the most popular method for hosting IoT applications in cloud servers. However, one major security issue of this method is that if a container image contains software with security vulnerabilities, the associated microservices also become vulnerable at run-time. Existing works attempted to reduce this risk with vulnerability-scanning tools. They, however, demand an up-to-date database and may not work with unpublished vulnerabilities. In this paper, we propose a novel system to strengthen container security from unknown attack using the mimic defense framework. Specifically, we constructed a resource pool with variant images and observe the inconsistency in execution results, from which we can identify potential vulnerabilities. To avoid continuous attack, we created a graph-based scheduling strategy to maximize the randomness and heterogeneity of the images used to replace the current images. We implemented a prototype using Kubernetes. Experimental results show that our framework makes hackers have to send 54.9% more random requests to complete the attack and increases the defence success rate by around 8.16% over the baseline framework to avoid the continuous unknown attacks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3