Affiliation:
1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
Abstract
Bisphenol A (BPA) is an environmental endocrine-disrupting compound that is resistant to conventional biological treatment, making it crucial to develop an oxidation process. This study introduces a novel hydrodynamic cavitation (HC) coupled with a Fenton + periodate (PI) oxidation system for the efficient degradation of BPA. By systematically examining the key parameters such as inlet pressure, Fe (II), H2O2, and PI concentration, it was found that HC performed optimally at a pressure of 0.5 MPa. A conversion of 98.14% was achieved within 60 min when the molar ratio of BPA, Fe (II), H2O2, and PI was approximately 1:1:5:1. Further analysis revealed that the gray correlation between H2O2 and PI concentrations on the degradation efficiency was 0.833 and 0.843, respectively, indicating that both of them had significant effects on the degradation process. The free radical quenching assay confirmed the hydroxyl radical (•OH) as the main active substance. Additionally, the toxicity of the degradation intermediates was evaluated using the Toxicity Estimation Software Tool (TEST). An artificial neural network (ANN)-based model was constructed to predict the BPA-degradation process, facilitating precise reagent dosing and providing robust support for the intelligent application of water-treatment technologies.
Funder
Natural Science Foundation of Hubei Province
Hubei Provincial Construction Science and Technology Research Plan