Abstract
Collected network data are often incomplete, with both missing nodes and missing edges. Thus, network completion that infers the unobserved part of the network is essential for downstream tasks. Despite the emerging literature related to network recovery, the potential information has not been effectively exploited. In this paper, we propose a novel unified deep graph convolutional network that infers missing edges by leveraging node labels, features, and distances. Specifically, we first construct an estimated network topology for the unobserved part using node labels, then jointly refine the network topology and learn the edge likelihood with node labels, node features and distances. Extensive experiments using several real-world datasets show the superiority of our method compared with the state-of-the-art approaches.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Graph Completion Through Local Pattern Generalization;Studies in Computational Intelligence;2024
2. Evaluating graph neural networks under graph sampling scenarios;PeerJ Computer Science;2022-03-04
3. Deep Graph Learning on Bipartite Observed Networks;2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS);2022-02