Abstract
We present computer simulation and theoretical results for a system of N Quantum Hard Spheres (QHS) particles of diameter σ and mass m at temperature T, confined between parallel hard walls separated by a distance Hσ, within the range 1≤H≤∞. Semiclassical Monte Carlo computer simulations were performed adapted to a confined space, considering effects in terms of the density of particles ρ*=N/V, where V is the accessible volume, the inverse length H−1 and the de Broglie’s thermal wavelength λB=h/2πmkT, where k and h are the Boltzmann’s and Planck’s constants, respectively. For the case of extreme and maximum confinement, 0.5<H−1<1 and H−1=1, respectively, analytical results can be given based on an extension for quantum systems of the Helmholtz free energies for the corresponding classical systems.
Funder
Convocatoria Institucional de Investigación Científica de la Universidad de Guanajuato
Subject
General Physics and Astronomy