Robust Universal Inference

Author:

Painsky AmichaiORCID,Feder MeirORCID

Abstract

Learning and making inference from a finite set of samples are among the fundamental problems in science. In most popular applications, the paradigmatic approach is to seek a model that best explains the data. This approach has many desirable properties when the number of samples is large. However, in many practical setups, data acquisition is costly and only a limited number of samples is available. In this work, we study an alternative approach for this challenging setup. Our framework suggests that the role of the train-set is not to provide a single estimated model, which may be inaccurate due to the limited number of samples. Instead, we define a class of “reasonable” models. Then, the worst-case performance in the class is controlled by a minimax estimator with respect to it. Further, we introduce a robust estimation scheme that provides minimax guarantees, also for the case where the true model is not a member of the model class. Our results draw important connections to universal prediction, the redundancy-capacity theorem, and channel capacity theory. We demonstrate our suggested scheme in different setups, showing a significant improvement in worst-case performance over currently known alternatives.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Permutation Invariant Individual Batch Learning;2023 IEEE Information Theory Workshop (ITW);2023-04-23

2. A Data-driven Missing Mass Estimation Framework;2022 IEEE International Symposium on Information Theory (ISIT);2022-06-26

3. STBi-YOLO: A Real-Time Object Detection Method for Lung Nodule Recognition;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3