Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk

Author:

Ou Meng-Yuan,Ting Yu,Ch’ng Boon-LekORCID,Chen Chi,Cheng Yung-Hua,Chang Tien-Chin,Hsi Hsing-ChengORCID

Abstract

In this study, kaolinite, carbon black (CB), iron sulfide (FeS), hydroxyapatite (HAP), and oyster shell powder (OSP) were selected as potentially ideal amendments to immobilize metals in sediment, including Ni, Cr, Cu, Zn, and Hg. In aqueous batch experiments, the five adsorbents were tested for capturing the five potential toxic metals individually at various concentrations. HAP and OSP showed the largest removal efficiencies towards Ni (OSP: 76.47%), Cr (OSP: 100.00%), Cu (HAP: 98.39%), and Zn (HAP: 64.56%), with CB taking the third place. In contrast, FeS and CB played a more significant role in Hg removal (FeS: 100.00%; CB: 86.40%). In the modified six-column microcosm experiments, five mixing ratios based on various considerations using the five adsorbent materials were tested; the water samples were collected and analyzed every week for 135 days. Results showed that caps including CB could immobilize the release of Hg and methylmercury (MeHg) better than those with FeS. More economical caps, namely, with a higher portion of OSP in the mixed capping, could not reach comparable effects to those with more HAP for immobilizing Ni, but performed almost the same for the other four metals. All columns with active caps showed greater metal immobilization as compared to the controlled column without caps.

Funder

Environmental Protection Administration, Executive Yuan, R.O.C. Taiwan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3