Abstract
In this study, the downstream effects of pollutants spreading due to hydromorphological gradients and associated changes in sediment transport conditions along the braided-meandering and deltaic distributary reach of a large river downstream section are discussed. We demonstrate the significance of hydrodynamic control for sediment-associated metal partitioning along the river. Typically, the downward decline of the sediment and metals spreading towards Lake Baikal is observed due to buffer effects in the delta. During peak flow, the longitudinal gradients in heavy metal concentration along the distributary delta reach are neglected due to higher concentrations delivered from the upper parts of the river. In particular, significant variations of heavy metal concentrations associated with the river depth are related to sediment concentration and flow velocity profiles. Various particulate metal behavior in silt-sand delta channels and the sand–gravel Selenga main stem emphasize the importance of near-bottom exchange for particles spreading with the river flow. Using empirically derived Rouse numbers, we found quantitative relationships between the ratio of particulate metals sorting throughout depth in a single river channel and the hydrodynamic conditions of sediment transport.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献