Higher Expressions of SHH and AR Are Associated with a Positive Receptor Status and Have Impact on Survival in a Cohort of Croatian Breast Cancer Patients

Author:

Budimir IvanORCID,Tomasović-Lončarić Čedna,Kralik KristinaORCID,Čonkaš JosipaORCID,Eljuga Domagoj,Žic Rado,Gorjanc Božo,Tucaković Hrvoje,Caktaš Doroteja,Jaman Josip,Lisek Valentino,Vlajčić Zlatko,Martić Krešimir,Ozretić PetarORCID

Abstract

Breast cancers (BC) are usually classified into four molecular subtypes according to the expression of estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2) receptors and proliferation marker Ki-67. Despite available anti-hormonal therapies and due to the inherent propensity of some subtypes to develop metastasis, there is a permanent need to discover new prognostic and predictive biomarkers, as well as therapeutic targets for BC. In this study, we used immunohistochemical staining to determine the expression of androgen receptor (AR) and sonic hedgehog protein (SHH), the main ligand of the Hedgehog-GLI (HH-GLI) signaling pathway, in 185 archival primary BC tissue samples and correlated it with clinicopathological characteristics, molecular subtypes, receptors statuses, and survival in a cohort of Croatian BC patients. Results showed that higher SHH and AR expressions were associated with positive receptor status, but increased SHH expression had a negative impact on survival in receptor-negative BCs. On the contrary, higher AR expression was mostly protective. However, multivariate analysis showed that only higher AR expression could be considered as an independent prognostic biomarker for poorer overall survival in triple-negative breast cancer patients (TNBC) (HR 10.9, 95% CI 1.43–83.67; p = 0.021), what could be Croatian population-related. SHH could be a potential target for treating TNBCs and HER2-enriched BCs, in cases where HH-GLI signaling is canonical (SHH-dependent).

Funder

Terry Fox Foundation

Young Researchers’ Career Development Project-Training of Doctoral Students

Croatian Science Foundation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3