Predicting Health Risks of Adult Asthmatics Susceptible to Indoor Air Quality Using Improved Logistic and Quantile Regression Models

Author:

Bae Wan D.ORCID,Alkobaisi Shayma,Horak Matthew,Park Choon-SikORCID,Kim Sungroul,Davidson Joel

Abstract

The increasing global patterns for asthma disease and its associated fiscal burden to healthcare systems demand a change to healthcare processes and the way asthma risks are managed. Patient-centered health care systems equipped with advanced sensing technologies can empower patients to participate actively in their health risk control, which results in improving health outcomes. Despite having data analytics gradually emerging in health care, the path to well established and successful data driven health care services exhibit some limitations. Low accuracy of existing predictive models causes misclassification and needs improvement. In addition, lack of guidance and explanation of the reasons of a prediction leads to unsuccessful interventions. This paper proposes a modeling framework for an asthma risk management system in which the contributions are three fold: First, the framework uses a deep learning technique to improve the performance of logistic regression classification models. Second, it implements a variable sliding window method considering spatio-temporal properties of the data, which improves the quality of quantile regression models. Lastly, it provides a guidance on how to use the outcomes of the two predictive models in practice. To promote the application of predictive modeling, we present a use case that illustrates the life cycle of the proposed framework. The performance of our proposed framework was extensively evaluated using real datasets in which results showed improvement in the model classification accuracy, approximately 11.5–18.4% in the improved logistic regression classification model and confirmed low relative errors ranging from 0.018 to 0.160 in quantile regression model.

Funder

Ministry of Environment

Korea Disease Control and Prevention Agency

Seattle University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3