Evaluation of Green Silver Nanoparticles Fabricated by Spirulina platensis Phycocyanin as Anticancer and Antimicrobial Agents

Author:

Soror Abel-Fattah Salah,Ahmed Mai Waled,Hassan Abdalla E. A.,Alharbi Mona,Alsubhi Nouf H.ORCID,Al-Quwaie Diana A.,Alrefaei Ghadeer I.ORCID,Binothman Najat,Aljadani Majidah,Qahl Safa H.ORCID,Jaber Fatima A.ORCID,Abdalla Hanan

Abstract

Green nanotechnology has attracted attention worldwide, especially in treating cancer and drug-resistant section 6 microbes. This work aims to investigate the anticancer activity of green silver nanoparticles synthesized by Spirulina platensis phycocyanin (SPAgNPs) on two cancer cell lines: Lung cancer cell line (A-549) and breast cancer cell line (MCF-7), compared to the normal human lung cell line (A138). We also aimed to investigate the bactericidal activity against Staphylococcus aureus ATCC29737, Bacillus cereus ATCC11778, Escherichia coli ATCC8379, and Klebsiella pneumonia, as well as the fungicidal activity against Candida albicans (ATCC6019) and Aspergillus niger. The obtained SPAgNPs were spherical and crystalline with a size of 30 nm and a net charge of −26.32 mV. Furthermore, they were surrounded by active groups responsible for stability. The SPAgNPs scavenged 85% of the DPPH radical with a relative increase of approximately 30% over the extract. The proliferation of cancer cells using the MTT assay clarified that both cancer cells (A-549 and MCF-7) are regularly inhibited as they grow on different concentrations of SPAgNPs. The maximum inhibitory effect of SPAgNPs (50 ppm) reached 90.99 and 89.51% against A-549 and MCF7, respectively. Regarding antimicrobial activity, no inhibition zones occurred in bacterial or fungal strains at low concentrations of SPAgNPs and the aqueous Spirulina platensis extract. However, at high concentrations, inhibition zones, especially SPAgNPs, were more potent for all tested microorganisms than their positive controls, with particular reference to Staphylococcus aureus, since the inhibition zones were 3.2, 3.8, and 4.3 mm, and Bacillus cereus was 2.37 mm when compared to tetracycline (2.33 mm). SPAgNPs have more potent antifungal activity, especially against Aspergillus niger, compared to their positive controls. We concluded that SPAgNPs are powerful agents against oxidative stress and microbial infection.

Funder

Jouf University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3