Improving the Tolerance to Salinity Stress in Lettuce Plants (Lactuca sativa L.) Using Exogenous Application of Salicylic Acid, Yeast, and Zeolite

Author:

Babaousmail Mahfoud,Nili Mohammed S.,Brik Rania,Saadouni Mohammed,Yousif Sawsan K. M.,Omer Rihab M.,Osman Nahid A.,Alsahli Abdulaziz A.ORCID,Ashour HatemORCID,El-Taher Ahmed M.

Abstract

Salinity is among the most limiting factors of crop production worldwide. This study aims to investigate the influence of the exogenous application of zeolite, yeast, and salicylic acid in alleviating the negative effect of salt stress under field conditions. Lettuce plants (Lactuca sativa L. cv. Batavia) were tested in a split-plot arrangement replicated three times. The salt stress was applied as a whole-plot factor in the concentrations (0 mM, 50 mM, 100 mM, and 150 mM NaCl). After 28 days of sowing, the plants were sprayed twice during the foliage growth with (control, salicylic acid 0.02%, yeast extract 3%, and zeolite 0.5%) as a split-plot factor. The length of roots and shoots, the number and area of leaves, and the biomass accumulation (dry and fresh weights) were measured 50 days after sowing. The concentrations of total soluble sugars, proline, Chlorophylls a and b in leaves have also been quantified. Salt stress significantly reduced the growth and the total chlorophyll of the lettuce plants (p < 0.05) and increased their proline and sugar contents’. Zeolite application improved the growth of lettuce at 0 and 50 mM NaCl, but at the highest salinity level only the number of leaves was improved by 15%. At a mild salinity stress, the application of salicylic acid has significantly (p < 0.05) increased the root length, height of plant, chlorophyll, and proline contents. Regarding the high stress levels (100 and 150 mM NaCl), yeast application showed the best tolerance to salinity stress by improving significantly most of the growth parameters (p < 0.05) but with lower proline, sugar, and chlorophyll contents. In general, foliar spray of yeast extract may offer a good alternative source of nutrients through leaves, leading to a better tolerance of the high salt stress exerted on roots.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3