Emergence Simulation of Biological Cell-like Shapes Satisfying the Conditions of Life Using a Lattice-Type Multiset Chemical Model

Author:

Ishida TakeshiORCID

Abstract

Although numerous reports using methods such as molecular dynamics, cellular automata, and artificial chemistry have clarified the process connecting non-life and life on protocell simulations, none of the models could simultaneously explain the emergence of cell shape, continuous self-replication, and replication control solely from molecular reactions and diffusion. Herein, we developed a model to generate all three conditions, except evolution ability, from hypothetical chains of chemical and molecular polymerization reactions. The present model considers a 2D lattice cell space, where virtual molecules are placed in each cell, and molecular reactions in each cell are based on a multiset rewriting rule, indicating stochastic transition of molecular species. The reaction paths of virtual molecules were implemented by replacing the rules of cellular automata that generate Turing patterns with molecular reactions. The emergence of a cell-like form with all three conditions except evolution ability was modeled and demonstrated using only molecular diffusion, reaction, and polymerization for modeling the chemical reactions of 15 types of molecules and 2 types of polymerized molecules. Furthermore, controlling self-replication is possible by changing the initial arrangement of a specific molecule. In summary, the present model is capable of investigating and refining existing hypotheses on the emergence of life.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference51 articles.

1. Early Earth and the Origins of Life;Gargaud,2013

2. First Life. Discovering the Connections Between Stars, Cells, and How Life Began;Deamer,2011

3. Inversion Concept of the Origin of Life

4. The Rise of A Habitable Planet: Four Required Conditions for the Origin of Life in the Universe

5. What Is Life–the Physical Aspect of the Living Cell;Schrödinger,1944

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3