Abstract
The aim of the present study was to compare changes in growth, ion accumulation and tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp. maritima, Beta vulgaris subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and Plantago maritima—as a result of NaCl and KCl salinity in controlled conditions. Similar growth responses to Na+ and K+ salinity in a form of chloride salts were found for all model plants, including growth stimulation at low concentrations, an increase in water content in leaves, and growth inhibition at high salinity for less salt-resistant taxa. All plant taxa were cultivated in soil except M. aquatica, which was cultivated in hydroponics. While the morphological responses of B. vulgaris subsp. vulgaris var. cicla, B. vulgaris subsp. maritima and P. maritima plants to NaCl and KCl were rather similar, C. officinalis plants tended to perform worse when treated with KCl, but the opposite was evident for M. aquatica. Plants treated with KCl accumulated higher concentrations of K+ in comparison to the accumulation of Na+ in plants treated with equimolar concentrations of NaCl. KCl-treated plants also had higher tissue levels of electrical conductivity than NaCl-treated plants. Based on the results of the present study, it seems that both positive and negative effects of Na+ and K+ on plant growth were due to unspecific ionic effects of monovalent cations or/and the specific effect of Cl−.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献