Learning-Based Predictive Building Energy Model Using Weather Forecasts for Optimal Control of Domestic Energy Systems

Author:

Jeon Byung-Ki,Kim Eui-JongORCID,Shin Younggy,Lee Kyoung-Ho

Abstract

The aim of this study is to develop a model that can accurately calculate building loads and demand for predictive control. Thus, the building energy model needs to be combined with weather prediction models operated by a model predictive controller to forecast indoor temperatures for specified rates of supplied energy. In this study, a resistance–capacitance (RC) building model is proposed where the parameters of the models are determined by learning. Particle swarm optimization is used as a learning scheme to search for the optimal parameters. Weather prediction models are proposed that use a limited amount of forecasting information fed by local meteorological centers. Assuming that weather forecasting was perfect, hourly outdoor temperatures were accurately predicted; meanwhile, differences were observed in the predicted solar irradiances values. In investigations to verify the proposed method, a seven-resistance, five-capacitance (7R5C) model was tested against a reference model in EnergyPlus using the predicted weather data. The root-mean-square errors of the 7R5C model in the prediction of indoor temperatures on all the specified days were within 0.5 °C when learning was performed using reference data obtained from the previous five days and weather prediction was included. This level of deviation in predictive control is acceptable considering the magnitudes of the loads and demand of the tested building.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3