Experimental Study on Damage Detection in ECC-Concrete Composite Beams Using Piezoelectric Transducers

Author:

Qin FengjiangORCID,Zhang ZhigangORCID,Xie Bo,Sun Rui

Abstract

The use of engineered cementitious composite (ECC) has attracted extensive attention in recent years because of the highly enhanced ductility owing to its unique strain-hardening behavior. In this paper, an electromechanical impedance-based technique is used to monitor the structural damage of RC beams strengthened with an ECC layer at the tensile zone. To achieve this purpose, three specimens are tested under bending loads to evaluate the proposed damage detection methodology. Five externally bonded PZT transducers are uniformly distributed at the surface of the ECC layer of the beams to measure the output conductance signatures in a healthy state and in different damage scenarios induced by different load levels. Test results showed that discrepancies exist between the signals measured in the intact state and each damage state, which can be used to evaluate the structural integrity changes. To assess the damage of ECC-concrete composite beams quantitatively, the statistical scalar index-root mean square deviation (RMSD) is used as the index, which can be calculated from the variations of conductance measurements of PZT sensors. The damage index values of the uniformly distributed PZT sensors provided cogent evidence of damage and revealed the evolution of structural damage. The crack patterns of beams at different damage levels are compared with the damage index values, and it shows the damage location can be derived from the measured conductance signatures of an array of PZT transducers.

Funder

National Natural Science Foundation of China

111 Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference46 articles.

1. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites

2. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC);Li;ACI Mater. J.,2001

3. Design of engineered cementitious composites (ECC) for processing and workability requirement;Fischer;Brittle Matrix Compos.,2003

4. Polyvinyl alcohol fiber reinforced engineered cementitious composites: Material design and performanceshttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.4523&rep=rep1&type=pdf

5. Matrix design of light weight, high strength, high ductility ECC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3