The Importance and Impact of Francisella-like Endosymbionts in Hyalomma Ticks in the Era of Climate Change

Author:

Sesmero-García Celia1,Cabanero-Navalon Marta Dafne1,Garcia-Bustos Victor12

Affiliation:

1. Department of Internal Medicine and Infectious Diseases, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain

2. Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain

Abstract

Ticks are obligatory hematophagous parasites that serve as vectors for a large amount of important human and livestock pathogens around the world, and their distribution and incidence of tick-associated diseases are currently increasing because of environmental biomass being modified by both climate change and other human activities. Hyalomma species are of major concern for public health, due to their important role as vectors of several diseases such as the Crimea–Congo hemorrhagic fever (CCHF) virus in humans or theileriosis in cattle. Characterizing the Hyalomma-associated microbiota and delving into the complex interactions between ticks and their bacterial endosymbionts for host survival, development, and pathogen transmission are fundamental, as it may provide new insights and spawn new paradigms to control tick-borne diseases. Francisella-like endosymbionts (FLEs) have recently gained importance, not only as a consequence of the public health concerns of the highly transmissible Francisella tularensis, but for the essential role of FLEs in tick homeostasis. In this comprehensive review, we discuss the growing importance of ticks associated with the genus Hyalomma, their associated tick-borne human and animal diseases in the era of climate change, as well as the role of the microbiome and the FLE in their ecology. We compile current evidence from around the world on FLEs in Hyalomma species and examine the impact of new molecular techniques in the study of tick microbiomes (both in research and in clinical practice). Lastly, we also discuss different endosymbiont-directed strategies for the control of tick populations and tick-borne diseases, providing insights into new evidence-based opportunities for the future.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3