Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing

Author:

Fornell AnnaORCID,Söderbäck Per,Liu Zhenhua,De Albuquerque Moreira Milena,Tenje Maria

Abstract

We have developed a fast and simple method for fabricating microfluidic channels in silicon using direct laser writing. The laser microfabrication process was optimised to generate microfluidic channels with vertical walls suitable for acoustic particle focusing by bulk acoustic waves. The width of the acoustic resonance channel was designed to be 380 µm, branching into a trifurcation with 127 µm wide side outlet channels. The optimised settings used to make the microfluidic channels were 50% laser radiation power, 10 kHz pulse frequency and 35 passes. With these settings, six chips could be ablated in 5 h. The microfluidic channels were sealed with a glass wafer using adhesive bonding, diced into individual chips, and a piezoelectric transducer was glued to each chip. With acoustic actuation at 2.03 MHz a half wavelength resonance mode was generated in the microfluidic channel, and polystyrene microparticles (10 µm diameter) were focused along the centre-line of the channel. The presented fabrication process is especially interesting for research purposes as it opens up for rapid prototyping of silicon-glass microfluidic chips for acoustofluidic applications.

Funder

SciLifeLab

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3