News-Driven Expectations and Volatility Clustering

Author:

Inoua Sabiou M.

Abstract

Financial volatility obeys two fascinating empirical regularities that apply to various assets, on various markets, and on various time scales: it is fat-tailed (more precisely power-law distributed) and it tends to be clustered in time. Many interesting models have been proposed to account for these regularities, notably agent-based models, which mimic the two empirical laws through a complex mix of nonlinear mechanisms such as traders switching between trading strategies in highly nonlinear way. This paper explains the two regularities simply in terms of traders’ attitudes towards news, an explanation that follows from the very traditional dichotomy of financial market participants, investors versus speculators, whose behaviors are reduced to their simplest forms. Long-run investors’ valuations of an asset are assumed to follow a news-driven random walk, thus capturing the investors’ persistent, long memory of fundamental news. Short-term speculators’ anticipated returns, on the other hand, are assumed to follow a news-driven autoregressive process, capturing their shorter memory of fundamental news, and, by the same token, the feedback intrinsic to the short-sighted, trend-following (or herding) mindset of speculators. These simple, linear models of traders’ expectations explain the two financial regularities in a generic and robust way. Rational expectations, the dominant model of traders’ expectations, is not assumed here, owing to the famous no-speculation, no-trade results.

Publisher

MDPI AG

Reference68 articles.

1. Animal Spirits: How Human Psychology Drives the Economy, and why it Matters for Global Capitalism;Akerlof,2009

2. Open models of Share Markets with two Dominant Types of Participants;Aoki;Journal of Economic Behavior & Organization,2002

3. Theory of Speculation;Bachelier,1900

4. A Survey of Behavioral Finance;Barberis;Handbook of the Economics of Finance,2003

5. Regular variation of GARCH processes

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3