Joint Resource Allocation for Frequency-Domain Artificial Noise Assisted Multiuser Wiretap OFDM Channels with Finite-Alphabet Inputs

Author:

Fan Linhui,Tang Bo,Jiang Qiuxi,Liu Fangzheng,Yin Chengyou

Abstract

The security issue on the physical layer is of significant challenge yet of paramount importance for 5G communications. In some previous works, transmit power allocation has already been studied for orthogonal frequency division multiplexing (OFDM) secure communication with Gaussian channel inputs for both a single user and multiple users. Faced with peak transmission power constraints, we adopt discrete channel inputs (e.g., equiprobable Quadrature Phase Shift Keying (QPSK) with symmetry) in a practical communication system, instead of Gaussian channel inputs. Finite-alphabet inputs impose a more significant challenge as compared with conventional Gaussian random inputs for the multiuser wiretap OFDM systems. This paper considers the joint resource allocation in frequency-domain artificial noise (AN) assisted multiuser wiretap OFDM channels with discrete channel inputs. This security problem is formulated as nonconvex sum secrecy rate optimization by jointly optimizing the subcarrier allocation, information-bearing power, and AN-bearing power. To this end, with a suboptimal subcarrier allocation scheme, we propose an efficient iterative algorithm to allocate the power between the information and the AN via the Lagrange duality method. Finally, we carry out some numerical simulations to demonstrate the performance of the proposed algorithm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Young Elite Scientist Sponsorship Program

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Eavesdropping Region in Hybrid mmWave-Microwave Wireless Systems;Wireless Communications and Mobile Computing;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3