Dynamic Partitioning Supporting Load Balancing for Distributed RDF Graph Stores

Author:

Bok Kyoungsoo,Kim Junwon,Yoo JaesooORCID

Abstract

Various resource description framework (RDF) partitioning methods have been studied for the efficient distributed processing of a large RDF graph. The RDF graph has symmetrical characteristics because subject and object can be used interchangeably if predicate is changed. This paper proposes a dynamic partitioning method of RDF graphs to support load balancing in distributed environments where data insertion and change continue to occur. The proposed method generates clusters and subclusters by considering the usage frequency of the RDF graph that are used by queries as the criteria to perform graph partitioning. It creates a cluster by grouping RDF subgraphs with higher usage frequency while creating a subcluster with lower usage frequency. These clusters and subclusters conduct load balancing by using the mean frequency of queries for the distributed server and conduct graph data partitioning by considering the size of the data stored in each distributed server. It also minimizes the number of edge-cuts connected to clusters and subclusters to minimize communication costs between servers. This solves the problem of data concentration to specific servers due to ongoing data changes and additions and allows efficient load balancing among servers. The performance results show that the proposed method significantly outperforms the existing partitioning methods in terms of query performance time in a distributed server.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3