Advanced Machine Learning for Gesture Learning and Recognition Based on Intelligent Big Data of Heterogeneous Sensors

Author:

Park Jisun,Jin Yong,Cho SeoungjaeORCID,Sung Yunsick,Cho KyungeunORCID

Abstract

With intelligent big data, a variety of gesture-based recognition systems have been developed to enable intuitive interaction by utilizing machine learning algorithms. Realizing a high gesture recognition accuracy is crucial, and current systems learn extensive gestures in advance to augment their recognition accuracies. However, the process of accurately recognizing gestures relies on identifying and editing numerous gestures collected from the actual end users of the system. This final end-user learning component remains troublesome for most existing gesture recognition systems. This paper proposes a method that facilitates end-user gesture learning and recognition by improving the editing process applied on intelligent big data, which is collected through end-user gestures. The proposed method realizes the recognition of more complex and precise gestures by merging gestures collected from multiple sensors and processing them as a single gesture. To evaluate the proposed method, it was used in a shadow puppet performance that could interact with on-screen animations. An average gesture recognition rate of 90% was achieved in the experimental evaluation, demonstrating the efficacy and intuitiveness of the proposed method for editing visualized learning gestures.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference36 articles.

1. Event Detection on Motion Activities Using a Dynamic Grid

2. Real-time infrared LED detection method for input signal positioning of interactive media;Song;J. Converg.,2016

3. A temporal hand gesture recognition system based on hog and motion trajectory

4. Hand gesture recognition system;Zeineb;Int. J. Comput. Sci. Inf. Secur.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3