Selective Poisoning Attack on Deep Neural Networks †

Author:

Kwon HyunORCID,Yoon Hyunsoo,Park Ki-WoongORCID

Abstract

Studies related to pattern recognition and visualization using computer technology have been introduced. In particular, deep neural networks (DNNs) provide good performance for image, speech, and pattern recognition. However, a poisoning attack is a serious threat to a DNN’s security. A poisoning attack reduces the accuracy of a DNN by adding malicious training data during the training process. In some situations, it may be necessary to drop a specifically chosen class of accuracy from the model. For example, if an attacker specifically disallows nuclear facilities to be selectively recognized, it may be necessary to intentionally prevent unmanned aerial vehicles from correctly recognizing nuclear-related facilities. In this paper, we propose a selective poisoning attack that reduces the accuracy of only the chosen class in the model. The proposed method achieves this by training malicious data corresponding to only the chosen class while maintaining the accuracy of the remaining classes. For the experiment, we used tensorflow as the machine-learning library as well as MNIST, Fashion-MNIST, and CIFAR10 as the datasets. Experimental results show that the proposed method can reduce the accuracy of the chosen class by 43.2%, 41.7%, and 55.3% in MNIST, Fashion-MNIST, and CIFAR10, respectively, while maintaining the accuracy of the remaining classes.

Funder

National Research Foundation of Korea

Institute for Information and communications Technology Promotion

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Deep learning in neural networks: An overview

2. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

3. Automatically designing CNN architectures using genetic algorithm for image classification;Sun;arXiv,2018

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3