Disjunctive Representation of Triangular Bipolar Neutrosophic Numbers, De-Bipolarization Technique and Application in Multi-Criteria Decision-Making Problems

Author:

Chakraborty Avishek,Mondal Sankar Prasad,Alam Shariful,Ahmadian Ali,Senu NorazakORCID,De Debashis,Salahshour Soheil

Abstract

This research paper adds to the theory of the generalized neutrosophic number from a distinctive frame of reference. It is universally known that the concept of a neutrosophic number is generally associated with and strongly related to the concept of positive, indeterminacy and non-belongingness membership functions. Currently, all membership functions always lie within the range of 0 to 1. However, we have generated bipolar concept in this paper where the membership contains both positive and negative parts within the range −1 to 0 and 0 to 1. We describe different structures of generalized triangular bipolar neutrosophic numbers, such as category-1, category-2, and category-3, in relation to the membership functions containing dependency or independency with each other. Researchers from different fields always want to observe the co-relationship and interdependence between fuzzy numbers and crisp numbers. In this platform, we also created the perception of de-bipolarization for a triangular bipolar rneutrosophic number with the help of well-known techniques so that any bipolar neutrosophic fuzzy number of any type can be smoothly converted into a real number instantly. Creating a problem using bipolar neutrosophic perception is a more reliable, accurate, and trustworthy method than others. In this paper, we have also taken into account a multi-criteria decision-making problem (MCDM) for different users in the bipolar neutrosophic domain.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference49 articles.

1. Fuzzy sets

2. Intuitionistic fuzzy sets

3. Fuzzy number intuitionistic fuzzy set;Liu;Fuzzy Syst. Math.,2007

4. Prioritized aggregation operators of trapezoidal intuitionistic fuzzy sets and their application to multicriteria decision-making

5. A Unifying Field in Logics Neutrosophy: Neutrosophic Probability, Set and Logic;Smarandache,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3