In Vivo Evaluation of a Subcutaneously Injectable Implant with a Low-Power Photoplethysmography ASIC for Animal Monitoring

Author:

Valero-Sarmiento Jose Manuel,Ahmmed ParvezORCID,Bozkurt AlperORCID

Abstract

Photoplethysmography is an extensively-used, portable, and noninvasive technique for measuring vital parameters such as heart rate, respiration rate, and blood pressure. The deployment of this technology in veterinary medicine has been hindered by the challenges in effective transmission of light presented by the thick layer of skin and fur of the animal. We propose an injectable capsule system to circumvent these limitations by accessing the subcutaneous tissue to enable reliable signal acquisition even with lower light brightness. In addition to the reduction of power usage, the injection of the capsule offers a less invasive alternative to surgical implantation. Our current prototype combines two application-specific integrated circuits (ASICs) with a microcontroller and interfaces with a commercial light emitting diode (LED) and photodetector pair. These ASICs implement a signal-conditioning analog front end circuit and a frequency-shift keying (FSK) transmitter respectively. The small footprint of the ASICs is the key in the integration of the complete system inside a 40-mm long glass tube with an inner diameter of 4 mm, which enables its injection using a custom syringe similar to the ones used with microchip implants for animal identification. The recorded data is transferred wirelessly to a computer for post-processing by means of the integrated FSK transmitter and a software-defined radio. Our optimized LED duty cycle of 0.4% at a sampling rate of 200 Hz minimizes the contribution of the LED driver (only 0.8 mW including the front-end circuitry) to the total power consumption of the system. This will allow longer recording periods between the charging cycles of the batteries, which is critical given the very limited space inside the capsule. In this work, we demonstrate the wireless operation of the injectable system with a human subject holding the sensor between the fingers and the in vivo functionality of the subcutaneous sensing on a pilot study performed on anesthetized rat subjects.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3