Abstract
Variable air humidity affects the characteristics of semiconductor metal oxides, which complicates the reliable and reproducible determination of CO content in ambient air by resistive gas sensors. In this work, we determined the sensor properties of electrospun ZnO and ZnO/Pd nanofibers in the detection of CO in dry and humid air, and investigated the sensing mechanism. The microstructure of the samples, palladium content, and oxidation state, type, and concentration of surface groups were characterized using complementary techniques: X-ray fluorescent spectroscopy, XRD, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) mapping, XPS, and FTIR spectroscopy. The sensor properties of ZnO and ZnO/Pd nanofibers were studied at 100–450 °C in the concentration range of 5–15 ppm CO in dry (RH25 = 0%) and humid (RH25 = 60%) air. It was found that under humid conditions, ZnO completely loses its sensitivity to CO, while ZnO/Pd retains a high sensor response. On the basis of in situ diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) results, it was concluded that high sensor response of ZnO/Pd nanofibers in dry and humid air was due to the electronic sensitization effect, which was not influenced by humidity change.
Funder
Russian Foundation for Basic Research
Saint Petersburg State University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献