Abstract
We document a feedback controller design for a nonlinear electrostatic transducer that exhibits a strong unloaded resonance. Challenging features of this type of transducer include the presence of multiple fixed points (some of which are unstable), nonlinear force-to-deflection transfer, effective spring-constant softening due to electrostatic loading and associated resonance frequency shift. Furthermore, due to the utilization of lowpass filters in the electronic readout circuitry, a significant amount of transport delay is introduced in the feedback loop. To stabilize this electro-mechanical system, we employ an active disturbance-rejecting controller with nonlinear force mapping and delay synchronization. As demonstrated by numerical simulations, the combination of these three control techniques stabilizes the system over a wide range of electrode deflections. The proposed controller shows good setpoint tracking and disturbance rejection, and improved settling time, compared to the sensor alone.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献