Saturated Hydraulic Conductivity Estimation Using Artificial Intelligence Techniques: A Case Study for Calcareous Alluvial Soils in a Semi-Arid Region

Author:

Yamaç Sevim Seda,Negiş Hamza,Şeker CevdetORCID,Memon Azhar M.ORCID,Kurtuluş Bedri,Todorovic MladenORCID,Alomair GadirORCID

Abstract

The direct estimation of soil hydraulic conductivity (Ks) requires expensive laboratory measurement to present adequately soil properties in an area of interest. Moreover, the estimation process is labor and time-intensive due to the difficulties of collecting the soil samples from the field. Hence, innovative methods, such as machine learning techniques, can be an alternative to estimate Ks. This might facilitate agricultural water and nutrient management which has an impact on food and water security. In this spirit, the study presents neural-network-based models (artificial neural network (ANN), deep learning (DL)), tree-based (decision tree (DT), and random forest (RF)) to estimate Ks using eight combinations of soil data under calcareous alluvial soils in a semi-arid region. The combinations consisted of soil data such as clay, silt, sand, porosity, effective porosity, field capacity, permanent wilting point, bulk density, and organic carbon contents. The results compared with the well-established model showed that all the models had satisfactory results for the estimation of Ks, where ANN7 with soil inputs of sand, silt, clay, permanent wilting point, field capacity, and bulk density values showed the best performance with mean absolute error (MAE) of 2.401 mm h−1, root means square error (RMSE) of 3.096 mm h−1, coefficient of determination (R2) of 0.940, and correlation coefficient (CC) of 0.970. Therefore, the ANN could be suggested among the neural-network-based models. Otherwise, RF could also be used for the estimation of Ks among the tree-based models.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3