Influence of Temperature and Polymer Concentration on the Nonlinear Response of Highly Acetylated Chitosan–Genipin Hydrogels

Author:

Mio Lorenzo,Sacco PasqualeORCID,Donati Ivan

Abstract

Strain hardening, i.e., the nonlinear elastic response of materials under load, is a physiological response of biological tissues to mechanical stimulation. It has recently been shown to play a central role in regulating cell fate. In this paper, we investigate the effect of temperature and polymer concentrations on the strain hardening of covalent hydrogels composed of pH-neutral soluble chitosans crosslinked with genipin. A series of highly acetylated chitosans with a fraction of acetylated units, FA, in the range of 0.4–0.6 was synthesized by the homogeneous re-N-acetylation of a partially acetylated chitosan or the heterogeneous deacetylation of chitin. A chitosan sample with an FA = 0.44 was used to prepare hydrogels with genipin as a crosslinker at a neutral pH. Time and frequency sweep experiments were then performed to obtain information on the gelling kinetics and mechanical response of the resulting hydrogels under small amplitude oscillatory shear. While the shear modulus depends on the chitosan concentration and is almost independent of the gel temperature, we show that the extent of hardening can be modulated when the gelling temperature is varied and is almost independent of the experimental conditions used to build the hydrogels (ex situ or in situ gelation). The overall effect is attributed to a subtle balance between the physical (weak) entanglements and covalent (strong) crosslinks that determine the mechanical response of highly acetylated chitosan hydrogels at large deformations.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3