Novel Natural Glycyrrhetinic Acid-Derived Super Metal Gel and Its Highly Selective Dyes Removal

Author:

Guo Shengzhu,Su Kaize,Yang Huiji,Zheng Wende,Zhang Zhen,Ang Song,Zhang Kun,Wu PanpanORCID

Abstract

Hydrogels play important roles in function materials, especially in wastewater treatment, that could solve the problems of microbial infections and dye pollutions. Herein, a natural glycyrrhetinic acid-derived gel was successfully constructed by forming hierarchical assemblies of the glycyrrhetinic acid derivatives (GA-O-09) with Cu2+. Interestingly, the GA-O-09/Cu2+ gel exhibited Cu2+-triggered shrinkage, which was helpful for spontaneous self-demolding through the shrinkage process with a precise amount of Cu2+. Moreover, the gel showed excellent antimicrobial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentrations (MICs) at 2.5 μg/mL and 5.0 μg/mL, respectively. Furthermore, the resultant GA-O-09/Cu2+ gel showed an excellent performance in dyes removal; the adsorption capacity at equilibrium (qe) could reach 82.91 mg/g according to a pseudo-second-order model, and it was better than most reported dye adsorbent materials. The experimental result suggested that the electrostatic interactions of the hydrogel with the cationic dyes and the hydrogel swelling were responsible for the possible dye removal mechanism of GA-O-09/Cu2+ gel. Therefore, our study holds the promise of a better future, for such a hydrogel could be used as an antibacterial and dye removal material.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Special Fund Project of Science and Technology Innovation Strategy of Guangdong Province

Department of Education of Guangdong Province

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3