Using Citizen Science to Complement IoT Data Collection: A Survey of Motivational and Engagement Factors in Technology-Centric Citizen Science Projects

Author:

Ali Muhammad Uzar,Mishra Bhupesh Kumar,Thakker Dhavalkumar,Mazumdar SuvodeepORCID,Simpson Sydney

Abstract

A key aspect of the development of Smart Cities involves the efficient and effective management of resources to improve liveability. Achieving this requires large volumes of sensors strategically deployed across urban areas. In many cases, however, it is not feasible to install devices in remote and inaccessible areas, resulting in incomplete data coverage. In such situations, citizens can often play a crucial role in filling this data collection gap. A popular complimentary science to traditional sensor-based data collection is to design Citizen Science (CS) activities in collaboration with citizens and local communities. Such activities are also designed with a feedback loop where the Citizens benefit from their participation by gaining a greater sense of awareness of their local issues while also influencing how the activities can align best with their local contexts. The participation and engagement of citizens are vital and yet often a real challenge in ensuring the long-term continuity of CS projects. In this paper, we explore engagement factors, factors that help keeping engagement high, in technology-centric CS projects where technology is a key enabler to support CS activities. We outline a literature review of exploring and understanding various motivational and engagement factors that influence the participation of citizens in technology-driven CS activities. Based on this literature, we present a mobile-based flood monitoring citizen science application aimed at supporting data collection activities in a real-world CS project as part of an EU project. We discuss the results of a user evaluation of this app, and finally discuss our findings within the context of citizens’ engagement.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3