Development of Coral Investigation System Based on Semantic Segmentation of Single-Channel Images

Author:

Song Hong,Mehdi Syed RazaORCID,Zhang Yangfan,Shentu Yichun,Wan Qixin,Wang Wenxin,Raza Kazim,Huang HuiORCID

Abstract

Among aquatic biota, corals provide shelter with sufficient nutrition to a wide variety of underwater life. However, a severe decline in the coral resources can be noted in the last decades due to global environmental changes causing marine pollution. Hence, it is of paramount importance to develop and deploy swift coral monitoring system to alleviate the destruction of corals. Performing semantic segmentation on underwater images is one of the most efficient methods for automatic investigation of corals. Firstly, to design a coral investigation system, RGB and spectral images of various types of corals in natural and artificial aquatic sites are collected. Based on single-channel images, a convolutional neural network (CNN) model, named DeeperLabC, is employed for the semantic segmentation of corals, which is a concise and modified deeperlab model with encoder-decoder architecture. Using ResNet34 as a skeleton network, the proposed model extracts coral features in the images and performs semantic segmentation. DeeperLabC achieved state-of-the-art coral segmentation with an overall mean intersection over union (IoU) value of 93.90%, and maximum F1-score of 97.10% which surpassed other existing benchmark neural networks for semantic segmentation. The class activation map (CAM) module also proved the excellent performance of the DeeperLabC model in binary classification among coral and non-coral bodies.

Funder

National Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Plan of Zhejiang Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3