Comparison of Zirconium Redistribution in BISON EBR-II Models Using FIPD and IMIS Databases with Experimental Post Irradiation Examination

Author:

Paaren Kyle M.1,Christian Spencer1,Capriotti Luca1,Aitkaliyeva Assel1,Porter Douglas1

Affiliation:

1. Idaho National Laboratory, 2525 Fremont Ave, Idaho Falls, ID 83415, USA

Abstract

Metallic fuels have seen increased interest for future sodium fast reactors due to their material properties: high thermal conductivities and advantageous neutronic properties allow for greater fission densities. One drawback to typical metallic fuels is zirconium redistribution, which impacts this advantageous material and its neutronic properties. Unfortunately, the processes behind zirconium migration behavior are understood using first principles, so before these fuels are implemented in future fast reactors, characterization and fuel qualification regimes must be completed. These activities can be supported through the use of robust modeling using the most accurate empirical models currently available to fuel researchers around the world. The tool that allows researchers to model this complex coupled thermo-mechanical behavior and nuclear properties is BISON. Additionally, BISON model parameters need to be compared against PIE measurements. The current work utilizes two fuel pins from EBR-II experiment X441 to optimize various model parameters, including porosity correction factor, thermal conductivity, phase transition temperature, and diffusion coefficient multipliers, before implementing the final model for seven fuel pins with differing characteristics. To properly evaluate the BISON simulations, the results are compared to PIE metallography data for each fuel pin, to ensure the zirconium redistribution is properly reflected in the simulation results. Six out of seven analyzed fuel pins demonstrate good agreement between the metallography images and BISON results, showing alignment of the Zr-rich, Zr-depleted, and moderately Zr-enriched zones at various axial heights along the fuel pins. Further work is needed to refine the model parameters for general pin use.

Funder

Office of Nuclear Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3